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Expression of Procollagen C-Proteinase Enhancer
in Cultured Rat Heart Fibroblasts: Evidence for
Co-Regulation With Type I Collagen
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Abstract Procollagen processing by procollagen C-proteinase (PCP) is an important step in collagen deposition.
This reaction is stimulated by another glycoprotein, known as PCP enhancer. The objective of this study was to identify
factors that regulate the expression of PCP enhancer in cardiac fibroblasts and examine possible correlation with collagen
expression. Rat heart fibroblasts were cultured in the presence or absence of three known stimulators of collagen synthesis:
ascorbic acid, TGF-B, and aldosterone. The mRNA and protein levels of PCP enhancer and collagen type | were each
assessed using Northern and Western blotting, respectively. Expression of PCP was assessed by RT-PCR and its activity in
the culture media was determined using radioactive procollagen as the substrate. The levels of PCP enhancer mRNA
increased 1.5- to 2-fold in response to ascorbate, TGF-, or aldosterone. This increase was paralleled by an up to fourfold
increase in the level of the pro a1(I) collagen chain transcript and was accompanied by a marked increase in the levels of
the respective proteins in the culture media. PCP activity in the culture media was also increased, apparently, without
effect on its expression. These results indicate that expression of PCP enhancer in cultured rat heart fibroblasts is
coordinated with that of collagen. The observed augmentation of PCP activity may be a consequence of the increase in the
levels of PCP enhancer in the culture media. J. Cell. Biochem. 90: 397-407, 2003.  © 2003 Wiley-Liss, Inc.
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stiffness, impairs electric signal propagation,
and reduces oxygen diffusion in the heart

The progression of cardiac dysfunction and
failure in hypertensive heart disease or follow-

ing myocardial infarction depends greatly on
the degree of cardiac fibrosis. Excessive collagen
deposition, the hallmark of fibrosis, increases
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[reviewed by Weber et al., 1992]. Fibrillar
collagens types I and III are the main collage-
nous components in both the normal and fibrotic
heart tissue and both are produced by cardiac
fibroblasts in culture [Eghbali et al., 1989].
Collagen expression in such cells is increased
in response to mechanical load as well as
growth factors such as TGF-B or hormones
such as angiotensin II and aldosterone [Carver
et al., 1991; Eghbali et al., 1991; Brilla et al.,
1994].

Fibrillar collagens are secreted into the
extracellular matrix as soluble precursors,
procollagens, where they are processed to
their mature form by specific procollagen
C- and N-proteinases that remove the
carboxyl- and amino-terminal propeptides,
respectively [Prockop and Kivirikko, 1995].
Removal of the propeptides is crucial for
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collagen fibril-formation. The proteases involv-
ed are, therefore, key players in collagen deposi-
tion. Procollagen C-proteinase (PCP), the
enzyme that cleaves the C-terminal propeptides
from procollagens types I-III [Hojima et al.,
1985; Kessler et al., 1986] as well as those of
procollagens V [Kessler et al., 2001; Unsoéld
et al., 2002], and VII [Rattenholl et al., 2002], is
identical to bone morphogenetic protein-1
(BMP-1) [Kessler et al., 1996; Li et al., 1996], a
member of the tolloid family of Zn-dependent
astacin-like metalloproteases, enzymes involv-
ed in developmental processes and tissue mor-
phogenesis. Several PCPs have been identified,
of which, BMP-1, mTld (mammalian tolloid)
and BMP-1/His, are alternatively spliced pro-
ducts of the BMP-1 gene [Takahara et al.,
1994a]. BMP-1 and mTld can each process a
number of additional extracellular matrix pro-
teins that play important roles in matrix depo-
sition, including the precursor of lysyl oxidase,
the enzyme responsible for covalent cross-link-
ing and stabilization of collagen fibrils, probi-
glycan, laminin 5, and chordin, a protein that
inhibits the action of the TGF-B-like growth
factor BMP-4 [reviewed in Kessler, 2003].
Cleavage of the C-terminal propeptides of
procollagen type I by BMP-1/PCP is stimulated
by PCP enhancer (PCPE), a glycoprotein that
binds to the C-propeptides of procollagens I and
IIT and increases the activity of PCP towards
type I procollagen 10—20-fold [Adar et al., 1986;
Kessler and Adar, 1989; Ricard-Blum et al.,
2002]. PCPE consists of two N-terminal CUB
domains that mediate binding to the procolla-
gen C-propeptide [Takahara et al., 1994b] and a
C-terminal netrin-like domain that shows
homology to tissue inhibitor of matrix metallo-
proteinases [Banyai and Patthy, 1999] and
might act as a weak inhibitor of matrix metal-
loproteinase-2 [Mott et al., 2000]. PCPE is most
abundant in connective tissues rich in collagen I
such asbones or tendons. It is also present in the
heart, skeletal muscles, and kidney, but is
barely detectable in the brain and liver [Kessler
et al., 1990]. PCPE is expressed, however, in
cirrhotic liver [Ogata et al., 1997], suggesting
that it may be an important regulator of exces-
sive collagen deposition in fibrosis. PCPE may
also be involved in the control of cell growth and
proliferation [Masuda et al., 1998; Kanaki et al.,
2000]. Recently, a novel form of PCPE has been
described and named PCPE2 [Xu et al., 2000;
Steiglitz et al., 2002]. PCPE2 shows 43% homo-

logy to PCPE and possesses PCP-enhancing
activity.

Despite its emerging role as a protein central
to collagen deposition, little is known about
the regulation of PCPE expression. TGF-$3 and
ascorbic acid have been shown to increase the
levels of PCP but not PCPE in a number of
fibrogenic cell lines [Lee et al., 1997]. When
applied in the presence of either serum or
TGF-B, mechanical load has been shown to
exert a similar effect on dermal fibroblasts,
again, without effect on the levels of PCPE
[Parsons et al., 1999]. Up-regulation of PCPE by
TGF-Bhasbeen, however, demonstrated in liver
stellate cells [Ogata et al., 1997] and in vascular
smooth muscle cells [Kanaki et al., 2000] along
with an increased expression of fibrillar col-
lagens. While PCPE may play an important role
in cardiac fibrosis, its expression by cardiac cells
and possible correlation with collagen expres-
sion have not been addressed before.

Here we demonstrate that PCPE is expres-
sed in cardiac fibroblasts and show that factors
known to stimulate collagen synthesis in the
heart, including ascorbate, TGF-B, and aldo-
sterone, co-regulate the expression of PCPE and
collagen in these cells.

MATERIALS AND METHODS
Cell Isolation and Culture

Neonatal rat heart fibroblasts were isolated
from the ventricles using enzymatic dissocia-
tion as previously described [Shalitin et al.,
1996]. The dissociated cells were suspended in
DMEM:Ham’s F12 (1:1), 10% fetal calf serum
(FCS) and antibiotics (penicillin, 100 U/ml;
streptomycin, 100 pg/ml; nystatin, 12.5 U/ml),
plated onto 100 mm culture dishes (Corning,
NY) and incubated for 60 min in a humidified
incubator at 5% CO5 and 37°C. Unsettled cells
were then removed while the fibroblasts, which
remained attached to the dishes, were grown
further in fibroblast growth medium (FGM)
consisting of DMEM, 10% FCS, 2 mM gluta-
mine, and antibiotics. Such fibroblast cultures
do not display non-fibroblast (e.g., myocytes or
vascular cells) markers [Kessler-Icekson et al.,
1984], indicating the homogeneity of this cell
system. To obtain cultures containing both
myocytes and fibroblasts, the pre-plating step
was omitted and all of the cells, including myo-
cytes, were allowed to attach and then grown in
FGM. Adult heart fibroblasts were isolated from
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the left ventricle and septum of male Wistar rats
(200 g) as described [Eghbali et al., 1991]. Cells
released in five to six digestion cycles were
suspended in FGM and incubated for 2 h in
100-mm culture dishes. Unsettled cells were
removed while the attached fibroblasts were
incubated further in fresh FGM.

Fibroblasts from either neonatal or adult
hearts were grown and handled using identical
protocols and showed similar morphology and
growth properties. Medium was replaced every
3—4 days. When confluent, the cells were
sub-cultured at a 1:3 dilution for further proli-
feration. Confluent fibroblasts from these cul-
tures were transferred into 60 mm dishes
(1 x 10° cells/dish) and experiments were in-
itiated 48 h later, at sub-confluency. Unless
otherwise stated, the cells were precondition-
ed for 24 h with serum-free medium (DMEM,
10 mM HEPES pH 7.3, 0.1% BSA, 2.5 pg/ml
insulin, 2.5 pg/ml transferrin, 2 mM glutamine,
antibiotics) containing 75 pg/ml sodium ascor-
bate. In some experiments, the insulin, trans-
ferrin and BSA were replaced by 1% FCS,
without effect on the results. The effectors
studied were added in fresh serum-free medium
and ascorbate was freshly added daily. Effector
concentrations and exposure times were select-
ed based on preliminary dose—response and
time-course studies in which conditions re-
quired for maximal stimulation of PCPE and
collagen mRNAs expression were defined. As
a routine, each experiment was performed
with fibroblasts from both, neonatal and adult
fibroblasts, with essentially the same results.
Culture media and supplements were purchas-
ed from Biological-Industries (Beit Haemek,
Israel) and human recombinant TGF-p was
from R&D Systems (Mineapolis, MN).

Unless otherwise stated, chemicals used in
the study were from Sigma Chemical (St. Louis,
MO).

In Situ Hybridization (ISH)

Cells were seeded on collagen-coated silane
microscope slides, and grown as above. At sub-
confluency, the cells were rinsed in PBS, fixed
for 10 min with 4% formaldehyde in PBS and
washed in PBS. The slides were immersed in
0.25% acetic anhydride for 10 min, rinsed in
PBS and sterile water, air-dried, and stored at
—20°C until processed. ISH was performed
using digoxigenin-labeled antisense and sense
cRNA probes [Pines et al., 1997]. PCPE probes

were transcribed from a plasmid containing a
1.3 kb EcoR1 fragment of the mouse PCPE
cDNA [Takahara et al., 1994b], using a com-
mercial kit (Kenzo, Boehringer-Mannheim,
Germany). The probes for the rat collagen
al(I) transcript were a courtesy of Dr. Mark
Pines (Volkani Institute, Rehovot, Israel).

RNA Analysis

Total RNA was extracted and subjected
to Northern blot hybridization as described
[Shalitin et al., 1996]. A ¢cDNA probe specific
for the rat pro «I1(I) gene (a kind gift from
Dr. David Rowe) [Genovese et al., 1984], and a
c¢DNA probe specific to mouse PCPE [Takahara
et al., 1994b] served to detect the respective
mRNAs. Hybridization signals were measured
either by exposure to Kodak X-Omat AR film
and soft-laser densitometry (Biomed Instru-
ments, Fullerton, CA), or by phosphorimaging
(Cyclone, Packard, UK). Loading variations
were corrected by hybridization to 18S rRNA
[Shalitin et al.,, 1996]. BMP-1 mRNA was
assessed by RT-PCR wusing oligonucleotides
5-TTGGGGGGTCCGGTTTCTTTTCTGC and
5-CCCGAGGTCATCACCTCCTCCCAG as the
down and upstream primers, respectively [Woz-
ney et al., 1988]. Sequence analysis of the 179 bp
amplicon, corresponding to nucleotides 2,040—
2,218 in the human BMP-1 gene, revealed 97%
identity to the published human sequence
(GI:179499). The RT-PCR results were normal-
ized to GAPDH mRNA [Fort et al., 1985].
Twenty-four and 20 amplification cycles were
performed for BMP-1 and GAPDH, respec-
tively, both within their respective linear ampli-
fication range. Each reaction solution (20 ul)
contained 0.08 pCi [¢*?P]-dCTP and the ampli-
fication products were separated by electro-
phoresis in 2% agarose gels, cut out, and
counted in a scintillation counter.

Immunoblotting Analysis

Culture media were centrifuged (3,000 rpm,
5 min, 4°C) and stored at —20°C. The corre-
sponding cell-layers were rinsed with PBS and
scraped into 250 pl of 1% SDS in PBS. Follow-
ing sonication (20 s, Heat-System-Ultrasonics
model W-375), each cell lysate was diluted 1:4 in
the same buffer, heated 3 min at 100°C and the
protein content was determined [Lowry et al.,
1951]. Samples of culture media (30 pl of
unconcentrated medium/lane; equivalent to
0.6% of the total volume) and cell-layer extracts
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(30-35 pg protein/lane; 12% of the total cell
extract fraction) were subjected to SDS—-PAGE
in 10 or 6% polyacrylamide gels, for detection
of PCPE or collagenous species, respectively.
Collagenous bands were analyzed after re-
duction with B-mercaptoethanol. Lanes with
purified mouse PCPE or human procollagen
preparations were included as standards in all
analyses. Proteins were electroblotted to nitro-
cellulose membranes (Nitroplus, MSI) and de-
tected with either a rabbit serum against a
synthetic peptide within the C-telopeptide of
the human collagen a1(I) chain (LF-67; a kind
gift of Dr. L. Fisher) [Fisher et al., 1995] or
an immunoaffinity-purified rabbit antibody
against mouse PCPE [Lee et al., 1997]. Reactive
bands were visualized with a goat anti-rabbit
IgG antibody coupled to horseradish peroxidase
and enhanced chemiluminiscence (ECL) and
quantified by densitometry. In all samples, a
single PCPE-reactive protein with mobility
corresponding to that of the 55 kDa mouse
PCPE [Kessler and Adar, 1989] was detected.
The individual collagenous species were identi-
fied by electrophoretic migration as compared to
bands in the standard purified human procolla-
gen samples.

PCP Activity

Aliquots of the culture media were dialyzed
against 0.05 M Tris-HCI, 0.15 M NaCl, 5 mM
CaCls, pH 7.5 (buffer A) and assayed for PCP
activity as described [Kessler and Adar, 1989].
Briefly, [*H]-tryptophan labeled chick embryo
procollagen type I (1.2 ng; 18,000 cpm; in 30 pl of
buffer A containing 0.1 mg/ml BSA) was added
to 170 pl of the dialyzed media samples and the
reaction solutions (200 pl) were incubated for
16to 18 h at 37°C. The reactions were stopped by
adding EDTA (final concentration of 10 mM)
and the amount of radioactivity in the free
C-propeptide was determined after removal of
undigested procollagen by selective ethanol
precipitation.

Statistical Analysis

In each experiment, values obtained for
mRNA, protein and enzyme activity in indivi-
dual cultures were divided by the mean value
derived for the corresponding fractions of
the control plates (three to four replicates) in
the same experiment. This provided a standard
ratio called relative score. The relative scores
obtained in this manner for identically treated

cultures in several independent experiments
were pooled into one group and analyzed statis-
tically using the Student’s ¢-test. P < 0.05 was
considered statistically significant.

RESULTS

PCPE Is Expressed by Cultured
Heart Fibroblasts

Cardiac fibroblasts from either neonatal or
adult rat hearts were grown in conditions favor-
able for their proliferation. The cells displayed
typical fibroblast morphology, with a few cells
assuming a large stellate shape and some cells
being binucleated. ISH analysis revealed PCPE
(Fig. 1A,C,D) and pro o1(I) (not shown) tran-
scripts in practically every cell in the culture.
The uniform expression of pro «1(I) mRNAs in
these cultures confirmed the fibrogenic nature
and purity of the cells. In cultures containing
cardiac fibroblasts and myocytes, the fibroblasts
were readily distinguished from the myocytes
by being positive for both PCPE and pro a1(I)
mRNAs (Fig. 1E,F). These results indicate that
both transcripts are produced exclusively by
heart fibroblasts, suggesting that cardiac fibro-
blasts co-express type I collagen and PCPE.

Ascorbic Acid Stimulates PCPE Expression

Ascorbic acid is essential for hydroxylation
of nascent pro o chains, a post-translational
modification required for triple-helix formation
and efficient secretion of procollagen [Prockop
et al., 1976]. Ascorbate may also promote tran-
scription of the procollagen genes [Lyons and
Schwartz, 1984; Geesin et al., 1988; Nusgens
et al.,, 2001]. To examine whether ascorbate
affects the expression of PCPE, we incubated
rat heart fibroblasts with or without ascorbate
and measured the levels of PCPE mRNA and
protein as compared to those of collagen. A
Northern blot shown in Figure 2A demonstrates
increased mRNA levels of both PCPE and pro
al(I) in fibroblasts from neonatal rats grown
in the presence of ascorbate. The mRNA scores
obtained in several such experiments show that
on the average, the abundance of the PCPE and
collagen mRNAs in fibroblasts incubated with
ascorbate is approximately 1.5-fold higher than
that seen in the controls (Fig. 2B). Essentially
the same results were obtained with cardiac
fibroblasts from adult rats (not shown).

The levels of PCPE and those of the collagen/
procollagen species in the cell-layer extracts



PCPE Expression in Heart Fibroblasts 401

T ¥ &' 74 P
L
e
. =
* % v
; i ‘
. 3 #
. ! L &
v ” ; ]
A ’ f
| "
' &k &
b .
2 S
.
o -
i -
E ] - ¥
gy 5

Fig. 1. Cardiac fibroblasts contain procollagen C-proteinase
enhancer (PCPE) and type | collagen transcripts. In-situ hybridi-
zation of PCPE and type | collagen mRNA. A: PCPE transcripts
(purple deposit) in neonatal fibroblasts. B: Neonatal fibroblasts
probed with the sense PCPE probe (negative control). C, D: PCPE
transcripts (purple deposit) in adult heart fibroblasts. E, F: Cult-
ures containing a mixed population of myocytes and fibroblasts

and media from fibroblasts incubated with or
without ascorbate were compared by immuno-
blotting. Figure 2C shows that the amount of
PCPE in the cell-layer fractions from cultures
incubated without ascorbate was higher than
that found in the cell-layer extracts from cul-
tures incubated with ascorbate. By contrast,
culture media from cells incubated with ascor-
bate contained at least twice as much PCPE as
compared to those derived from cells grown
without the vitamin. Since all cultures con-
tained approximately the same number of cells
per plate, and considering the fact that, on the
same scale, the medium samples analyzed were
20-fold smaller than the corresponding cell
lysates (0.6% as opposed to 12% of the respective
fractions; see “Materials and Methods”), it ap-
pears that ascorbate increased both production
and efficiency of secretion of PCPE. Immuno-
blots presented in Figure 2D show that the total
amount and efficiency of secretion of the various
(pro) collagen a1(I) species were both higher in
cultures incubated with ascorbate than in those
incubated in its absence. Also evident is that in
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probed for either PCPE (E) or pro a1(l) (F) mRNA. With both
probes, purple-blue deposits (arrows) are seen exclusively in the
stellate-shaped fibroblasts. No such deposits are detected around
the nuclei of the myocytes (light blue; myocyte cell limits are
not obvious). Original magnifications: x50 (A, B, C, E, F) and
%100 (D).

the absence of ascorbate, processing was ineffi-
cient so that the band corresponding to the fully
processed a1(I) chain was barely detectable and
the main reactive band corresponded to the
unprocessed pro al(I) chain. In the presence of
ascorbate, however, the band corresponding to
the a1(I) chain predominated with little or no
unprocessed pro o1(I) remaining. We conclude
that in cardiac fibroblasts, stimulation by ascor-
bic acid of procollagen expression and secretion
is paralleled by increased production and secre-
tion of PCPE, an effect that could account for the
increased rate of procollagen processing observ-
ed in these conditions.

PCPE Expression Is Up-Regulated by TGF-8

TGF-B is a universal stimulator of collagen
synthesis [Eghbali et al., 1991]. The addition of
TGF-B to cardiac fibroblasts from adult rats
induced a 1.5- and 3-fold increase in PCPE
and collagen mRNA, respectively (Fig. 3A).
The observed increase in the level of PCPE
mRNA was associated with a twofold increase in
the amount of PCPE in the culture medium
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Fig. 2. Up-regulation of PCPE and type | collagen by ascorbic
acid. Neonatal heart fibroblasts were incubated in serum-free
medium with (Asc) or without (C) ascorbate for 48 h. A: A
representative Northern blot of RNA from two replicate culture
dishes probed for PCPE and pro a.1(1) mRNAs, and for 18S rRNA.
This blot shows a marked stimulation of PCPE and collagen | gene
expression by ascorbate, higher than that of the pooled results
shown in (B) below, to best exemplify the stimulatory effect of
ascorbate. B: Bar graph presentation of the average mRNA

Collagen

(Fig. 3B). Together these findings suggest a co-
ordinated up-regulation of the genes for col-
lagen I and PCPE by TGF-B, in these cells,
further supporting the stimulatory effect of
TGF-B on PCPE expression.

Aldosterone Stimulates PCPE Expression

The mineralocorticoid aldosterone has been
shown to promote both accumulation of col-
lagen in the heart [Brilla et al.,, 1993] and
collagen synthesis in cardiac fibroblasts in cul-
ture [Brilla et al., 1994]. This urged us to
examine whether aldosterone can also stimu-
late the expression of PCPE in such cells. As
shown in Figure 4A, aldosterone induced an

C Asc
Cell layer -- -
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Cell layer Medium
C Asc C Asc
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scores. Open and solid bars, control and ascorbate containing
cultures, respectively. Mean £ SE, *P<0.05, **P<0.01 versus
control cultures; n=5-10. C, D: Immunoblots of PCPE (dupli-
cate cultures) and pro a1()/a1(l)-related antigens, respectively.
Pro a1, pCal, pNal, and ol designate intact pro o1(l) chain,
partially processed procollagen chains lacking either the N- (pC)
or the C- (pN) propeptides, and the fully processed a1(1) chain,
respectively.

approximately 1.5-fold increase in the abun-
dance of PCPE mRNA. This increase was
paralleled by a similar rise in the levels of the
proal(I) chain transcripts and was independent
of the age of the animals from which the
fibroblasts were derived since cells from neona-
tal and adult rat hearts displayed the same
pattern (Fig. 4A). It also led to an approximately
twofold increase in the levels of PCPE protein
and those of the various collagenous species
in the culture media (Fig. 4B). Addition of the
aldosterone receptor antagonist spironolactone
abolished the stimulatory effect of the hormone,
indicating that the effect of aldosterone was
mediated by its receptor in a specific manner.
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Fig. 3. TGF-Benhances PCPE expression inratheart fibroblasts.
Adultrat heart fibroblasts were preconditioned with ascorbate for
24 h prior to the addition of TGF-f (2.5 ng/ml) and incubated for
another 24 h. A: Relative scores of PCPE and pro a1(I) mRNAs.
Solid and open bars, cells incubated with or without TGF-g,
respectively. Mean £ SE; *P<0.05, **P<0.01 versus control,
n=3-9. B: Relative scores of PCPE levels in the culture media
assessed by immunoblotting and densitometry. Mean = SE,
*P<0.05 versus control (n=3-4). Inset, a representative
immunoblot.

The inhibitory effect of spironolactone was also
evident at the mRNA levels (not shown).

PCP Activity

In view of the stimulatory effects of ascorbate,
TGF-B, and aldosterone on PCPE expression, it
was of interest to examine whether any of these
compounds has also affected the expression of
PCP. Figure 5 demonstrates that PCP activity
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Fig. 4. Aldosterone increases PCPE expression in rat heart
fibroblasts. Fibroblasts were preincubated with ascorbate for
24 h, then supplemented with aldosterone (10 nM) and incubat-
ed for additional 24 h. A: mRNA scores calculated relative to
those of the respective controls. Solid and open bars, PCPE
and pro a1(l), respectively. Mean £SE, (h=3-11), *P<0.05,
**P<0.01 versus control. B: Representative immunoblots of
PCPE and a1(l)-related collagen species in the culture media of
adult heart fibroblasts: lane 1, control; lane 2, aldosterone
(10 nM); lane 3, aldosterone + spironolactone (10 nM each). Pro
a1, pCal, pNal, and a1 are as defined in the legend to Figure 2.
The relative intensities of the PCPE and o.1(I) collagen bands are
presented below each panel.

in culture media from cells exposed to ascorbate
increased twofold as compared to controls (cells
grown without ascorbate). An increase in PCP
activity was also observed in culture media from
cells incubated in the presence of either TGF-f8
or aldosterone (Fig. 5). In these instances,
however, PCP activity was only 20—30% higher
than that of the respective controls (cells grown
in the presence of ascorbate), a moderate in-
crease that apparently represents incremental
stimulatory effects of TGF-p and aldosterone
over that of ascorbate alone. In any event, since
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Fig. 5. PCP activity is increased in the presence of ascorbate,
TGF-B, or aldosterone. Fibroblasts were incubated with ascor-
bate (Asc; neonate), ascorbate plus TGF-$ (adult), or ascorbate
plus aldosterone (Aldo; adult) as detailed in ““Materials and
Methods” and legends to Figures 2—4. The levels of BMP-1/PCP
mRNA (solid bars) and PCP activity (open bars) are presented as
ratios calculated relative to those of their respective controls
(no additions or, as in the case of TGF-B and Aldo, addition of
ascorbate alone). Mean = SE, n=3-6, *P < 0.05, **P<0.01.

the media samples analyzed contained PCPE,
the values obtained represent the combined
action of both, the enzyme(s) and its enhancer
protein. Because the amount of PCP produced
by cardiac fibroblasts is very low, the band
corresponding to the enzyme was undetectable
by immunoblotting. Using RT-PCR for assess-
ment of the BMP-1 mRNA, we found no increase
in the levels of the BMP-1 transcripts following
any of the treatments applied. In the absence of
evidence for increased expression of BMP-1 in
cells treated with ascorbate, TGF-j, or aldoster-
one, we attribute the increased PCP activity in
the respective culture media to the increase in
PCPE synthesis rather than that of PCP.

DISCUSSION

Expression of PCOLCE (the gene coding for
PCPE) has been demonstrated in a variety
of collagen producing cells, including several
fibroblastic and osteoblastic cell lines [Lee et al.,
1997], liver stellate cells [Ogata et al., 1997],
human dermal fibroblasts [Parsons et al., 1999],
and vascular smooth muscle cells [Kanaki
et al., 2000]. A good correlation between type I
collagen and PCPE expression has also been
demonstrated in terms of their tissue distribu-
tion [Kessler et al., 1990]. We have, therefore,

anticipated that cardiac fibroblasts, the cells
responsible for collagen deposition in the heart,
would also express PCPE. Confirming this pre-
diction, we demonstrate here for the first
time that cardiac fibroblasts express PCPE.
The finding that practically every cell in cul-
tures of cardiac fibroblasts exhibited transcripts
of both PCPE and the pro o1(I) collagen chain
favors the purity of these cultures and suggests
that the genes coding for both proteins are co-
expressed. This, along with the observation that
myocytes are negative for both, the PCPE and
COL1AL1 transcripts, suggest that PCPE may
serve as a specific marker of heart fibroblasts,
additional to collagen type I.

Ascorbic acid controls collagen synthesis
at several levels, including post-translational
hydroxylation (which is required for triple-helix
formation and efficient procollagen secretion),
increased transcription and stabilization of
the collagen transcripts [Prockop et al., 1976;
Lyons and Schwartz, 1984; Geesin et al.,
1988; Nusgens et al., 2001]. The correlation
between collagen and PCPE expression in
cultured heart fibroblasts and the well estab-
lished roles of ascorbate in collagen biosynthesis
and secretion, have led us to examine whether
this vitamin is also required for maximal ex-
pression of PCPE. Our finding that ascorbic acid
increases the level of PCPE mRNA and protein
and, apparently, also promotes PCPE secretion,
indicates a role for ascorbate in the regulation of
PCPE expression which may be related to the
stimulation by this vitamin of collagen syn-
thesis, stability, and/or secretion. While these
findings contradict those of Lee et al. [1997] who
did not detect changes in the levels of PCPE in
response to ascorbate in several cell lines, we
have found recently that ascorbate stimulates
PCPE expression in cultures of mouse NIH-3T3
and Rat2 fibroblasts (Gohar and Kessler, in
preparation). In these cells, PCPE expression
was also increased when grown in the presence
of serum, and addition of ascorbate had little
effect beyond that of the serum. Thus, the con-
flicting results might reflect differences in the
nature of the cells studied (primary cultures as
opposed to established cell lines), and perhaps
also growth conditions.

TGF-B, an important stimulator of collagen
deposition is expressed by a variety of cell types,
including cardiac myocytes and fibroblasts
[Flanders et al., 1995; Lee et al., 1997]. Our
finding that, in cardiac fibroblasts, TGF-p in-
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creases the levels of PCPE mRNA as well as
those of PCPE is consistent with earlier ob-
servations, which documented stimulation of
PCPE expression by TGF-f in cultured liver
stellate cells, vascular smooth muscle cells, and
dermal fibroblasts [Ogata et al., 1997; Parsons
etal., 1999; Kanaki et al., 2000]. In the latter cell
model, application of mechanical load in the
presence of TGF-B did not induce further
increase in the levels of PCPE [Parsons et al.,
1999]. As was also observed by others [Ogata
et al., 1997; Kanaki et al., 2000], the increase in
PCPE mRNA in cardiac fibroblasts was paral-
leled by an increase in the steady state levels of
the COL1A1 mRNA, suggesting a coordinated
regulation of the two genes by TGF-B. Never the
less, and as in the case of ascorbate, the effects of
TGF-B may differ from one cell type to another
since no enhancement of PCPE expression by
TGF-p was detected in certain osteogenic cell
lines despite the marked stimulation in the
expression of collagen I and BMP-1 seen in these
cells in response to this cytokine [Lee et al.,
1997].

In addition to its endocrine action as a
regulator of body electrolytes, aldosterone acts
as a stimulator of cardiac fibrosis [Weber et al.,
1992]. Evidence that aldosterone is produced in
the heart [Silvestre et al., 1998] along with the
demonstration that aldosterone receptors are
expressed by heart cells [Lombes et al., 1995]
suggest that the stimulatory action of aldoster-
one towards collagen synthesis in the heart may
be mediated by paracrine as well as autocrine
mechanisms. Consistent with this, aldosterone
has been shown to stimulate collagen synthesis
in cultured cardiac fibroblasts, an effect that
was abolished in the presence of its receptor
antagonist spironolactone [Brilla et al., 1994].
The same antagonist can repress cardiac fibro-
sis in vivo when administered into hypertensive
rats [Brilla et al., 1993] and, as was recently
found by us [Kessler-Icekson et al., 2002], it can
also reduce the expression of both collagen and
PCPE in the remodeling heart following acute
myocardial infarction in rats. Unlike TGF-f and
ascorbate, which are universal stimulators of
collagen biosynthesis, stimulation of collagen
synthesis by aldosterone appears to be restrict-
ed to the cardiovascular system. We show here
that simultaneously with the increase in col-
lagen expression, aldosterone stimulates the
production of PCPE in cardiac fibroblasts. As
in earlier studies, we have established the

specificity of the effect by demonstrating that
the action of aldosterone is blocked in the
presence of the receptor antagonist, spironolac-
tone. While aldosterone enhanced the expres-
sion of both PCPE and collagen, it did not
increase the proportions of processed collagen
species, as was the case with ascorbic acid
(compare Fig. 4B with Fig. 2D). This difference
is consistent with the limited increase in PCP
activity in the respective culture media as com-
pared to controls (Fig. 5) and may be attributed
to the fact that in this set of experiments, all of
the cells, including controls, were grown in the
presence of ascorbate and thus produced satu-
rating amounts of PCPE. It is, therefore, reason-
able to assume that further increase in the level
of PCPE in response to aldosterone will have
little or no effect on the overall rate of procolla-
gen processing in the culture media.

Previous studies [Lee et al., 1997; Parsons
et al., 1999] have shown that stimulation of
collagen gene expression by TGF- and ascor-
bate was accompanied by a marked increase in
the levels of PCP transcripts. Contrary to these
reports, we did not detect such changes in car-
diac fibroblasts in response to these effectors
even though both stimulated the expression of
COL1A1 in our cells. PCP activity in the cul-
ture media of the cardiac fibroblasts was,
however, increased in response to both ascor-
bate and TGF-B, as was also observed with
aldosterone (Fig. 5). We were unable to demon-
strate changes in the amount of PCP protein in
the culture media of any of the treated cells
because its level in these media was below
detection by immunoblotting. The possibility
that the level of PCP was increased in response
to the various effectors cannot, however, be
ruled out. Furthermore, since we determined
the level of the BMP-1 transcript at a single,
relatively late, time point, we cannot exclude
the possibility that a transient increase in the
PCP transcript did occur at an earlier time,
which could have led to an increase in the level
of the enzyme in the culture media. In the
absence of evidence for an increase in PCP ex-
pression, an alternative mechanism to account
for the increase in the enzyme activity seen in
culture media of fibroblasts stimulated by
ascorbate, TGF-B, or aldosterone, could be that
it resulted from the increase in the levels of
PCPE in these media.

Excessive collagen deposition in cardiac
fibrosis is a detrimental outcome of chronic
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hypertension or myocardial infarction as it may
lead to heart failure. The correlation between
PCPE and collagen expression seen here in vitro
is in accordance with the previously established
correlation between the tissue distribution of
PCPE and that of collagen type I [Kessler et al.,
1990], further supporting the role of PCPE as a
regulator of collagen maturation. PCPE may
prove as a new target for intervention with
excessive collagen deposition in the heart and
other fibrotic tissues.
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